您的位置 主页 正文

切比雪夫最佳逼近定理?

一、切比雪夫最佳逼近定理? (1)当x→a时,函数f(x)及F(x)都趋于零; (2)在点a的去心邻域内,用切比雪夫多项式逼近已知函数 function f = Chebyshev(y,k,x0) syms t; 二、切雪夫中值定理? 应该是

一、切比雪夫最佳逼近定理?

(1)当x→a时,函数f(x)及F(x)都趋于零;

(2)在点a的去心邻域内,用切比雪夫多项式逼近已知函数 function f = Chebyshev(y,k,x0) syms t;

二、切雪夫中值定理?

应该是切比雪夫定理。

设X是一个随机变数取区间(0,∞)上的值,F(x)是它的分布函数,设Xα(α >0)的数学期望M(Xα )存在,a>0,则不等式成立。这叫做切比雪夫定理,或者切比雪夫不等式。

任意一个数据集中,位于其平均数m个标准差范围内的比例(或部分)总是至少为1-1/m2,其中m为大于1的任意正数。对于m=2,m=3和m=5有如下结果:

所有数据中,至少有3/4(或75%)的数据位于平均数2个标准差范围内。

所有数据中,至少有8/9(或88.9%)的数据位于平均数3个标准差范围内。

所有数据中,至少有24/25(或96%)的数据位于平均数5个标准差范围内。

三、切比谢夫定理?

切比雪夫定理(chebyshev's theorem;切比雪夫不等式),内容为设X是一个随机变数取区间(0,∞)上的值,F(x)是它的分布函数,设Xα(α >0)的数学期望M(Xα)存在,a>0,则不等式成立。

19世纪俄国数学家切比雪夫研究统计规律中,论证并用标准差表达了一个不等式,这个不等式具有普遍的意义,被称作切比雪夫定理,其大意是:

任意一个数据集中,位于其平均数m个标准差范围内的比例(或部分)总是至少为1-1/m2,其中m为大于1的任意正数。对于m=2,m=3和m=5有如下结果:

所有数据中,至少有3/4(或75%)的数据位于平均数2个标准差范围内。

所有数据中,至少有8/9(或88.9%)的数据位于平均数3个标准差范围内。

所有数据中,至少有24/25(或96%)的数据位于平均数5个标准差范围内。

四、切尔比夫定理?

切比雪夫定理

设X1,X2,…,Xn,…是相互独立的随机变量序列,数学期望E(Xi)和方差D(Xi)都存在(i=1,2,…),且D(Xi)<C(i=l,2,…),则对任意给定的ε>0,有

特别地:X1,X2,…,Xn,…是相互独立的随机变量序列,数学期望E(Xi)=μ和方差D(Xi)=σ2(i=1,2,…),则对任意给定的ε>0,有

即[3]

切比雪夫定理的这一推论,使我们关于算术平均值的法则有了理论根据.设测量某一物理量a,在条件不变的情况下重复测量n次,得到的结果X1,X2,…,Xn是不完全相同的,这些测量结果可看作是n个独立随机变量X1,X2,…,Xn的试验数值,并且有同一数学期望a。于是,按大数定理j可知,当n足够大时,下式成立,即

上式表明,n足够大时,把n次测量结果的算术平均值作为a的近似值,所产生的误差是很小的。[5]

五、契比雪夫定理?

设X是一个随机变数取区间(0,∞)上的值,F(x)是它的分布函数,设Xα(α >0)的数学期望M(Xα )存在,a>0,则不等式成立。这叫做切比雪夫定理,或者切比雪夫不等式。

若整数n > 3,则至少存在一个质数p,符合n < p < 2n − 2。另一个稍弱说法是:对于所有大于1的整数n,至少存在一个质数p,符合n < p < 2n。

六、雪比切夫介绍?

(1821年5月26日-1894年12月8日),俄罗斯数学家。他一生发表了70多篇科学论文,内容涉及数论、概率论、函数逼近论、积分学等方面。

他证明了贝尔特兰公式,自然数列中素数分布的定理,大数定律的一般公式以及中心极限定理。

他不仅重视纯数学,而且十分重视数学的应用。

七、切比雪夫定律?

设X是一个随机变数取区间(0,∞)上的值,F(x)是它的分布函数,设Xα(α >0)的数学期望M(Xα )存在,a>0,则不等式成立。这叫做切比雪夫定理,或者切比雪夫不等式。

其大意是:

任意一个数据集中,位于其平均数m个标准差范围内的比例(或部分)总是至少为1-1/m2,其中m为大于1的任意正数。对于m=2,m=3和m=5有如下结果:

所有数据中,至少有3/4(或75%)的数据位于平均数2个标准差范围内。

所有数据中,至少有8/9(或88.9%)的数据位于平均数3个标准差范围内。

所有数据中,至少有24/25(或96%)的数据位于平均数5个标准差范围内。

八、切比奇夫定理?

切比雪夫定理 chebyshev's theorem 其大意是:任意一个数据集中,位于其平均数m个标准差范围内的比例(或部分)总是至少为1-1/㎡,其中m为大于1的任意正数。对m=2,m=3和m=5有如下结果:

所有数据中,至少有3/4(或75%)的数据位于平均数2个标准差范围内。

所有数据中,至少有8/9(或88.9%)的数据位于平均数3个标准差范围内。

所有数据中,至少有24/25(或96%)的数据位于平均数5个标准差范围内。

意义切比雪夫不等式说明,DX越小,则 P{|X-EX|>=ε} 越小,P{|X-EX|<ε}越大,也就是说,随机变量X取值基本上集中在EX附近,这进一步说明了方差的意义。

内容

切比雪夫不等式可以使人们在随机变量X的分布未知的情况下,对事件 概率作出估计。

定理

设随机变量X具有数学期望,方差 则对任意正数ε,不等式 或 成立。

注意:应用切比雪夫不等式必须满足E(X)和D(X)存在且有限这一条件。

若对于任意的ε>O,当n很大时,事件“ ”的概率接近于0,则称随机变量序列{Xn}依概率收敛于a  。正因为是概率,所以不排除小概率事件“”发生。所以,依概率收敛是不确定现象中关于收敛的一种说法,记为。

切比雪夫定理

切比雪夫定理

设X1,X2,…,Xn,…是相互独立的随机变量序列,数学期望E(Xi)和方差D(Xi)都存在(i=1,2,…),且D(Xi)<C(i=l,2,…),则对任意给定的ε>0,有

特别地:X1,X2,…,Xn,…是相互独立的随机变量序列,数学期望E(Xi)=μ和方差D(Xi)=σ(i=1,2,…),则对任意给定的ε>0,有

切比雪夫定理

切比雪夫定理的这一推论,使我们关于算术平均值的法则有了理论根据.设测量某一物理量a,在条件不变的情况下重复测量n次,得到的结果X1,X2,…,Xn是不完全相同的,这些测量结果可看作是n个独立随机变量X1,X2,…,Xn的试验数值,并且有同一数学期望a。于是,按大数定理j可知,当n足够大时,下式成立,即

切比雪夫定理

上式表明,n足够大时,把n次测量结果的算术平均值作为a的近似值,所产生的误差是很小的。

九、切比雪夫连杆结构介绍?

连杆机构(Linkage Mechanism)又称低副机构,是机械的组成部分中的一类,指由若干(两个以上)有确定相对运动的构件用低副(转动副或移动副)联接组成的机构。

平面连杆机构中最基本也是应用最广泛的一种型式是由四个构件组成的平面四杆机构。由于机构中的多数构件呈杆状,所以常称杆状构件为杆。1低副是面接触,耐磨损;加上转动副和移动副的接触表面是圆柱面和平面,制造简便,易于获得较高的制造精度。连杆机构广泛应用于各种机械和仪表中。

十、切客西夫定理?

切比雪夫定理是设X是一个随机变数取区间(0,∞)上的值,F(x)是它的分布函数,设Xα(α >0)的数学期望M(Xα )存在,a>0,则不等式成立。这叫做切比雪夫定理,或者切比雪夫不等式。[

为您推荐

返回顶部