您的位置 主页 正文

定积分的定积分怎么求?

一、定积分的定积分怎么求? 定积分的求法如下: 第一类是凑微分,例如xdx=1/2dx²,积分变量仍然是x,只是把x²看着一个整体,积分限不变。 第二类换元积分法,令x=x(t),自然有dx=

一、定积分的定积分怎么求?

定积分的求法如下:

第一类是凑微分,例如xdx=1/2dx²,积分变量仍然是x,只是把x²看着一个整体,积分限不变。

第二类换元积分法,令x=x(t),自然有dx=dx(t)=x'(t)dt,这里引入新的变量,积分限要由x的变换范围换成t的变化范围。

第三类分部积分法,设u=u(x),v=v(x)均在区间[a,b]上可导,且u′,v′∈R([a,b]),则有分部积分公式。

定积分的定义如下:

设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n个子区间[x0,x1], (x1,x2], (x2,x3], …, (xn-1,xn],其中x0=a,xn=b。可知各区间的长度依次是:△x1=x1-x0,在每个子区间(xi-1,xi]中任取一点ξi(1,2,...,n),作和式。

该和式叫做积分和,设λ=max{△x1, △x2, …, △xn}(即λ是最大的区间长度),如果当λ→0时,积分和的极限存在,则这个极限叫做函数f(x) 在区间[a,b]的定积分。

并称函数f(x)在区间[a,b]上可积。其中:a叫做积分下限,b叫做积分上限,区间[a, b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx 叫做被积表达式,∫ 叫做积分号。之所以称其为定积分,是因为它积分后得出的值是确定的,是一个常数, 而不是一个函数。

二、高斯积分怎么求定积分?

高斯积分是一种特殊的积分,可以用变量代换的方法来求定积分。具体步骤如下:1. 对于高斯积分形式的定积分,先将被积函数转化为指数函数的形式;2. 通过变量代换,将被积函数中的自变量转化为高斯积分形式,以便于利用高斯积分的性质进行求解;3. 利用高斯积分的性质进行求解,最后再将原先的变量代换回来。高斯积分的求解过程相对繁琐,需要较高的数学知识和技巧。在实际计算中,可以借助于相关的数学软件和工具来简化计算过程。

三、xdsinx怎么求定积分?

xsinx积分是-xcosx+sinx+C。

分部积分法:∫udv=uv-∫vdu

∫ xsinx dx

= - ∫ x d(cosx)

=-xcosx+∫ cosx dx

=-xcosx+sinx+C

所以xsinx积分是-xcosx+sinx+C。

扩展资料:

1、不定积分的公式

(1)∫ a dx = ax + C,a和C都是常数

(2)∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1

(3)∫ 1/x dx = ln|x| + C

(4)∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1

(5)∫ e^x dx = e^x + C

2、不定积分的方法:

第一类换元其实就是一种拼凑,利用f'(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。(用换元法说,就是把f(x)换为t,再换回来)。

分部积分,就那固定的几种类型,无非就是三角函数乘上x,或者指数函数、对数函数乘上一个x这类的,记忆方法是把其中一部分利用上面提到的f‘(x)dx=df(x)变形,再用∫xdf(x)=f(x)x-∫f(x)dx这样的公式,当然x可以换成其他g(x)。

四、复合函数求定积分?

复合函数积分公式是F'(g(x))=F'g'(x),然后再数据代进去,通过换元简化处理即可,积分是微分的逆运算,即知道了函数的导函数,反求原函数。

且若是有唯一确定的y值与之对应,则变量x与y之间通过变量u形成的一种函数关系,这种函数称为复合函数

五、mathematica怎么求定积分?

1,

定积分的求解主要命令是Integrate[f,{x,min,max}], 或者使用工具栏输入也可以。例如求

In[6]:=Integrate[x^2Exp[ax],{x,-4,4}].

这条命令也可以求广义积分.

例如求

In[7]:=Integrate[1/(x-2)^2,{x,0,4}]

求无穷积也可以,例如

In[8]:=Integrate[1/x^4,{x,1,Infinity}]

如果广义积分发散也能给出结果,例如:

In[9]:=Integrate[1/x^2,{x,-1,1}]

如果无法判定敛散性,就用给出一个提示.

2,

数值积分是解决求定积分的另一种有效的方法,它可以给出一个近似解。特别是对于用Integrate命令无法求出的定积分,数值积分更是可以发挥巨大作用。

它的命令格式为:

Nintegrate[f,{x,a,b}] 在[a,b]上求f数值积分

3, 除了上述简单情形外, Integrate可以还可以求不定积分, 二重积分,三重积分. 具体参见其帮助文件.

六、运用定积分求面积?

严格回答这个问题必须先严格定义什么是曲边图形的面积,这对于一般的平面点集不是个显然的概念,否则无从谈起精不精确。 以直角坐标系中的曲边梯形为例,先用测度定义什么是平面图形的面积以及什么是可求面积的图形,然后用Darboux上和与Darboux下和两边夹证明连续函数围出来的曲边梯形是可求面积的且面积恰好是inf{S}和sup{s},然后证明Darboux上(下)和的极限恰好是上(下)积分,然后因为连续函数一定可积所以上积分=下积分=定积分=面积

七、matlab求定积分与不定积分?

求函数积分,一般用int()函数。

使用格式:

int(S)——对被积函数S求积分

int(S,a,b)——对被积函数S求定积分,积分区间从a到b。

例如,求函数的不定积分。

syms x,int(1/(1+x^2))

运行结果为 atan(x)

例如,求函数的定积分。

syms x,int(x1*log(1+x1),0,1)

运行结果为 1/4

扩展资料

定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。

这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式)。

一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。

八、xcosx的定积分怎么求?

∫xcosxdx =∫xdsinx =xsinx-∫sinxdx =xsinx+cosx+C 。

定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。

一个函数可以存在不定积分,而不存在定积分,也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分,若只有有限个间断点,则定积分存在,若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。

扩展资料:

定积分几何意义:

x轴之上部分为正,x轴之下部分为负,根据cosx在[0, 2π]区间的图像可知,正负面积相等,因此其代数和等于0。 定积分是积分的一种,是函数f(x)在区间[a,b]上的积分和的极限。

定积分是把函数在某个区间上的图象[a,b]分成n份,用平行于y轴的直线把其分割成无数个矩形,再求当n→+∞时所有这些矩形面积的和。

如果对一个函数f(x)在a~b的范围内进行定积分,则其几何意义是该函数曲线与x=a,x=b,y=0这三条直线所夹的区域的面积,其中在x轴上方的部分的面积为正值,反之,面积为负值。

九、定积分求极限的方法?

定积分的定义在高等数学中的考察频次较高,属于重点考察对象,在考研中也不例外,今天同大家一起学习定积分的定义,深度挖掘定积分定义的深层次考点,熟练掌握定积分求n项和式的极限问题。

定积分数学定义:

如果函数f(x)在区间[a,b]上连续,用分点xi将区间[a,b]分为n 个小区间,在每个小区间[xi-1,xi]上任取一点ri(i=1,2,3„,n) ,作和式f(r1)+...+f(rn) ,当n趋于无穷大时,上述和式无限趋近于某个常数A,这个常数叫做y=f(x) 在区间上的定积分。

定积分是把函数在某个区间上的图象[a,b]分成n份,用平行于y轴的直线把其分割成无数个矩形,再求当n→+∞时所有这些矩形面积的和。习惯上,我们用等差级数分点,即相邻两端点的间距Δx是相等的。但是必须指出,即使Δx不相等,积分值仍然相同。我们假设这些“矩形面积和”S=f(x1)Δx1+f(x2)Δx2+……f[x(n-1)]Δx(n-1),那么当n→+∞时,Δx的最大值趋于0,所以所有的Δx趋于0,所以S仍然趋于积分值。

十、定积分求弧长公式?

定积分求平面曲线弧长公式: ds=√(1+y'^2)dx;定积分作为积分的一种,是函数f(x)在区间[a,b]上积分和的极限。这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式)。一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。

扩展资料:

定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。

定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。

为您推荐

返回顶部