您的位置 主页 正文

偏导数与全导数的区别?

一、偏导数与全导数的区别? 二者的适用对象不同。偏导数针对的是多元函数,全导数针对的是一元函数。 偏导数:求一个函数的偏导数就是当此函数含有多个变量时,在其他变量保

一、偏导数与全导数的区别?

二者的适用对象不同。偏导数针对的是多元函数,全导数针对的是一元函数。

偏导数:求一个函数的偏导数就是当此函数含有多个变量时,在其他变量保持恒定只求之中一个变量的导数。所以说偏导数主要针对多元函数。

全导数:函数z=f(m,n),其中自变量x构成了中间变量m=m(x),n=n(x),且z为关于x的一元函数。这时称z的导数就为全导数。所以说全导数主要针对复合型一元函数。 拓展资料:

1、在数学中,一个多变量的函数的偏导数,就是它关于其中一个变量的导数而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。

偏导数在向量分析和微分几何中是很有用的。

2、已知二元函数z=f(u,v),其中u、v是关于x的一元函数,有u=u(x)、v=v(x),u、v作为中间变量构成自变量x的复合函数z,它最终是一个一元函数,它的导数就称为全导数。

全导数的出现可以作为一类导数概念的补充,其中渗透着整合全部变量的思想。

对全导数的计算主要包括一一型锁链法则、二一型锁链法则、三一型锁链法则,其中二一型锁链法则最为重要,并且可以将二一型锁链法则推广到更加一般的情况n一型锁链法则。 : 偏导数- 全导数-

二、偏导数和偏导数的导数?

一、定义不同

导数,是对含有一个自变量的函数进行求导。

偏导数,是对含有两个自变量的函数中的一个自变量求导。

二、几何意义不同

函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。

偏导数 f'x(x0,y0) 表示固定面上一点对 x 轴的切线斜率;偏导数 f'y(x0,y0) 表示固定面上一点对 y 轴的切线斜率。

高阶偏导数:如果二元函数 z=f(x,y) 的偏导数 f'x(x,y) 与 f'y(x,y) 仍然可导,那么这两个偏导函数的偏导数称为 z=f(x,y) 的二阶偏导数。二元函数的二阶偏导数有四个:f"xx,f"xy,f"yx,f"yy。

三、求法不同

导数

1、直接法:由高阶导数的定义逐步求高阶导数。

一般用来寻找解题方法。

2、高阶导数的运算法则:

3、间接法:利用已知的高阶导数公式,通过四则运算,变量代换等方法。

当函数 z=f(x,y) 在 (x0,y0)的两个偏导数 f'x(x0,y0) 与 f'y(x0,y0)都存在时,我们称 f(x,y) 在 (x0,y0)处可导。如果函数 f(x,y) 在域 D 的每一点均可导,那么称函数 f(x,y) 在域 D 可导。

此时,对应于域 D 的每一点 (x,y) ,必有一个对 x (对 y )的偏导数,因而在域 D 确定了一个新的二元函数,称为 f(x,y) 对 x (对 y )的偏导函数。简称偏导数。

按偏导数的定义,将多元函数关于一个自变量求偏导数时,就将其余的自变量看成常数,此时他的求导方法与一元函数导数的求法是一样的。

扩展资料

求导公式

1、y=c(c为常数) y'=0

2、y=x^n y'=nx^(n-1)

3、y=a^x y'=a^xlna

4、y=e^x y'=e^x

5、y=logax y'=logae/x

6、y=lnx y'=1/x

7、y=sinx y'=cosx

8、y=cosx y'=-sinx

9、y=tanx y'=1/cos^2x

10、y=cotx y'=-1/sin^2x

11、y=arcsinx y'=1/√1-x^2

12、y=arccosx y'=-1/√1-x^2

13、y=arctanx y'=1/1+x^2

14、y=arccotx y'=-1/1+x^2

三、偏导数存在和偏导数连续的区别?

存在 和 连续的区别在于:偏导数存在和偏导数连续是不同的。偏导数存在是指在某点处的偏导数存在,而偏导数连续则是指在某个区域内的所有点的偏导数都存在且连续。在更正式的数学定义中,偏导数存在是指在某点的某个方向上的导数存在,而偏导数连续则是指在某点的所有方向上的导数都存在且连续。偏导数是多元函数的导数,在计算机科学、工程、物理学等领域中经常用到。了解偏导数存在和连续的区别,可以帮助我们更好地理解多元函数的导数的概念和应用。此外,在计算多元函数的极值和梯度时,对偏导数连续的要求也较高,因此在实际应用中需要注意。

四、偏导数与导数一样吗?

不一样。导数是函数式有一个未知数时对一个未知数求导。偏导数是函数式有两个未知数,将其中一个未知数看做已知数,对另一个未知数求导。

五、二阶偏导数与导数的关系?

一、定义不同

导数,是对含有一个自变量的函数进行求导。

偏导数,是对含有两个自变量的函数中的一个自变量求导。

二、几何意义不同

函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。

偏导数 f'x(x0,y0) 表示固定面上一点对 x 轴的切线斜率;偏导数 f'y(x0,y0) 表示固定面上一点对 y 轴的切线斜率。

高阶偏导数:如果二元函数 z=f(x,y) 的偏导数 f'x(x,y) 与 f'y(x,y) 仍然可导,那么这两个偏导函数的偏导数称为 z=f(x,y) 的二阶偏导数。二元函数的二阶偏导数有四个:f"xx,f"xy,f"yx,f"yy。

三、求法不同

导数

1、直接法:由高阶导数的定义逐步求高阶导数。

一般用来寻找解题方法。

2、高阶导数的运算法则:

3、间接法:利用已知的高阶导数公式,通过四则运算,变量代换等方法。

当函数 z=f(x,y) 在 (x0,y0)的两个偏导数 f'x(x0,y0) 与 f'y(x0,y0)都存在时,我们称 f(x,y) 在 (x0,y0)处可导。如果函数 f(x,y) 在域 D 的每一点均可导,那么称函数 f(x,y) 在域 D 可导。

此时,对应于域 D 的每一点 (x,y) ,必有一个对 x (对 y )的偏导数,因而在域 D 确定了一个新的二元函数,称为 f(x,y) 对 x (对 y )的偏导函数。简称偏导数。

按偏导数的定义,将多元函数关于一个自变量求偏导数时,就将其余的自变量看成常数,此时他的求导方法与一元函数导数的求法是一样的。

扩展资料

求导公式

1、y=c(c为常数) y'=0

2、y=x^n y'=nx^(n-1)

3、y=a^x y'=a^xlna

4、y=e^x y'=e^x

5、y=logax y'=logae/x

6、y=lnx y'=1/x

7、y=sinx y'=cosx

8、y=cosx y'=-sinx

9、y=tanx y'=1/cos^2x

10、y=cotx y'=-1/sin^2x

11、y=arcsinx y'=1/√1-x^2

12、y=arccosx y'=-1/√1-x^2

13、y=arctan

六、全导数与偏导数的区别全导数dz/dt=(偏z/偏u)(du/dt)+(偏z/偏v)(dv/dt)?

连锁图的终端只有t一个变量,u,v为中间变量,z对t求导即为全导数,终端为多个自变量,则z对其中一个求导称为偏导数

七、偏导数和导数有什么区别?

导数是只含一个自变量的方程中,当自变量有了一个很小的变化时函数的变化率. 偏导数是含有2个或者2个以上的自变量的方程中,当这些自变量中的其中一个产生了一个微小的变化并且另外的变量都不变时整个函数的变化率. 这两个的区别在于导数的概念是伴随着1维方程(就是只含有一个未知数的方程)存在的,偏导数是伴随着多维方程存在的. 联系就是在解题的时候有一些……在解偏导时把那些不变的变量都看成常数,解法和导数类似.

八、偏导数和一阶导数的区别?

一、定义不同

导数,是对含有一个自变量的函数进行求导。

偏导数,是对含有两个自变量的函数中的一个自变量求导。

二、几何意义不同

函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。

偏导数 f'x(x0,y0) 表示固定面上一点对 x 轴的切线斜率;偏导数 f'y(x0,y0) 表示固定面上一点对 y 轴的切线斜率。

高阶偏导数:如果二元函数 z=f(x,y) 的偏导数 f'x(x,y) 与 f'y(x,y) 仍然可导,那么这两个偏导函数的偏导数称为 z=f(x,y) 的二阶偏导数。二元函数的二阶偏导数有四个:f"xx,f"xy,f"yx,f"yy。

三、求法不同

导数

1、直接法:由高阶导数的定义逐步求高阶导数。

一般用来寻找解题方法。

2、高阶导数的运算法则:

3、间接法:利用已知的高阶导数公式,通过四则运算,变量代换等方法。

当函数 z=f(x,y) 在 (x0,y0)的两个偏导数 f'x(x0,y0) 与 f'y(x0,y0)都存在时,我们称 f(x,y) 在 (x0,y0)处可导。如果函数 f(x,y) 在域 D 的每一点均可导,那么称函数 f(x,y) 在域 D 可导。

此时,对应于域 D 的每一点 (x,y) ,必有一个对 x (对 y )的偏导数,因而在域 D 确定了一个新的二元函数,称为 f(x,y) 对 x (对 y )的偏导函数。简称偏导数。

按偏导数的定义,将多元函数关于一个自变量求偏导数时,就将其余的自变量看成常数,此时他的求导方法与一元函数导数的求法是一样的。

扩展资料

求导公式

1、y=c(c为常数) y'=0

2、y=x^n y'=nx^(n-1)

3、y=a^x y'=a^xlna

4、y=e^x y'=e^x

5、y=logax y'=logae/x

6、y=lnx y'=1/x

7、y=sinx y'=cosx

8、y=cosx y'=-sinx

9、y=tanx y'=1/cos^2x

10、y=cotx y'=-1/sin^2x

11、y=arcsinx y'=1/√1-x^2

12、y=arccosx y'=-1/√1-x^2

13、y=arctanx y'=1/1+x^2

14、y=arccotx y'=-1/1+x^2

九、文科导数与理科导数的区别?

文科学的很浅,只学多项式的求导,不学三角函数、对数等的求导,复合函数亦是如此。

文科生学习的是选修1系列:包含选修1-1与1-2。而理科生要学习选修2系列:包含选修2-1,2-2,2-3。理科数学的导数题要复杂得多,文科数学就没有那么复杂 而且解题思路也没那么难

十、偏导数z的平方除以偏导数x乘以偏导数y怎么求?

偏导数的求法:当函数z=f(x,y) 在(x0,y0)的两个偏导数f'x(x0,y0) 与f'y(x0,y0)都存在时,我们称f(x,y) 在(x0,y0)处可导。如果函数f(x,y) 在域D的每一点均可导,那么称函数 f(x,y) 在域D可导。此时,对应于域D的每一点(x,y) ,必有一个对x (对y )的偏导数,因而在域D 确定了一个新的二元函数,称为f(x,y) 对x (对y)的偏导函数,简称偏导数。按偏导数的定义,将多元函数关于一个自变量求偏导数时,就将其余的自变量看成常数,此时他的求导方法与一元函数导数的求法是一样的。

  什么是偏导数

  在数学中,一个多变量的函数的偏导数,就是它关于其中一个变量的导数而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化),偏导数在向量分析和微分几何中是很有用的。

  在一元函数中,导数就是函数的变化率。对于二元函数的“变化率”,由于自变量多了一个,情况就要复杂的多。在xOy 平面内,当动点由 P(x0,y0) 沿不同方向变化时,函数 f(x,y) 的变化快慢一般来说是不同的,因此就需要研究 f(x,y) 在(x0,y0) 点处沿不同方向的变化率。

为您推荐

返回顶部